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Abstract—In this paper, we propose a novel approach for the
analysis of shielded microstrip circuits, composed of a number of
thin metallic areas with arbitrary shapes and finite conductivity,
embedded in a multilayered lossy medium. The analysis is based
on the solution of an integral equation (IE) obtained by enforcing
the proper boundary condition to the electric field on the metallic
areas. The IE is solved by using the method of moments with entire
domain basis functions, which are numerically determined by the
boundary integral-resonant-mode expansion (BI–RME) method.
The use of the BI–RME method allows for the efficient calculation
of the basis functions independently on the shape of the domain,
thus permitting the analysis of a wide class of circuits. Two exam-
ples demonstrate the accuracy, rapidity, and flexibility of the pro-
posed method.

Index Terms—Entire domain basis functions, integral equations,
microstrip filters, MMICs, moment method.

I. INTRODUCTION

OVER THE last years, considerable interest has been
directed to the design of boxed multilayered circuits

(Fig. 1). This configuration is typically considered in the
design of many actual monolithic microwave integrated circuits
(MMICs), both in single-layer [1] and multilayered configura-
tions [2], [3].

Among the possible numerical methods applied to the anal-
ysis of this type of structures, the integral equation (IE) method
is by far one of the most efficient. The IE method can be for-
mulated either in the spectral [4] or spatial domains [5]. The
resulting IE is solved by the method of moments (MoM), usu-
ally considering sub-domain basis functions (e.g., rooftops [6],
[7] or basis functions on triangular domains [8], [9]).

Recently, the IE/MoM method in the spectral domain was ap-
plied with entire domain basis functions [10]. The main advan-
tage of using the vector modal functions derived in [10] is the
dramatic reduction in the order of the MoM matrix since few
entire domain basis functions are usually sufficient to represent
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Fig. 1. Shielded MMIC with arbitrarily shaped metallic areas in a multilayered
lossy medium. The patches can be placed at different height and they may
overlap.

the unknown currents. Moreover, the calculation of the MoM
matrix is enhanced because of the rapid decrease of the spectral
components to be added subsequently for the calculation of the
matrix elements. It is noted, however, that the original work de-
rived in [10] is limited to areas with a rectangular shape, where
the entire domain basis functions are known analytically.

In this paper, we present the extension of the method pro-
posed in [10] to the case of metallic areas with an arbitrary
shape (Fig. 1). The entire domain basis functions are determined
numerically by the boundary integral-resonant mode expansion
(BI–RME) method [11]. The use of the BI–RME method has
two main advantages. The first is the possibility of obtaining en-
tire domain basis functions for arbitrary shapes in a short time,
and the second is that the entries of the MoM matrix are practi-
cally obtained as a by-product of the method itself. In fact, the
surface integrals involved in the calculations of the MoM ma-
trix can be converted into line integrals on the boundary of the
metallic areas, and the quantities required on the boundary are
the basic output of the BI–RME calculation.

A preliminary discussion of the proposed algorithm was pre-
sented in [12]. This paper gives a comprehensive explanation
of the MoM/BI–RME method, adding two novel capabilities:
metallic areas including a port may have an arbitrary shape, and
multiply connected metallizations can be considered.

II. IE/MoM A PPROACH

Let us consider the structure shown in Fig. 2, consisting of a
multilayered medium and metallic areas with arbitrary shapes

, possibly located at different interfaces. The circuit
is fed at the frequency at ports ( ), conventionally
defined on the first areas . As usual [5], [13],
[14], the ports are represented as small gaps between the metal-
lization and the wall of the box (delta-gap voltage excitations).

0018–9480/01$10.00 © 2001 IEEE
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Fig. 2. Different metallic areas considered in the analysis: simply (S ) or
multiply connected patches attached to a port (S ), simply (S ) or multiply
connected internal patches (S ). @S represents the boundary of the areaS ,
except the possible part corresponding to a port (denoted by@S ). In case of
multiply connected areas,@S consists of many lines@S ; @S ; . . ..

In [10], the analysis is based on the solution of a system of
IEs, which are obtained by enforcing the boundary condition to
the transverse-to-electric field at all the metallic areas

(1)

where the points and belong to and , respectively,
denotes the part of the boundary of that belongs to the

th port, is the outward normal, is the voltage applied to
the th port, and is the “sheet impedance” of the metalliza-
tions. The choice of is problem dependent. For instance, in
the case of a single-layer microstrip circuit with a metallization
thickness much larger than the skin depth, we can use the
surface impedance of the conductors
( is the resistivity of the metal), in the case of low-frequency
calculations ( ), we can use . Moreover, is the
(unknown) current density on , and the Green’s function
is given by [15]

(2)

where are the transverse electric modal vectors of the TE and
TM modes of the box, with the normalization

. The expressions of are

(TM modes) (3)

(TE modes) (4)

where and are the eigenfunctions of the Helmholtz equa-
tion with the Dirichlet or Neumann boundary conditions on

(see Fig. 2), and and are the corresponding eigen-
vectors. Finally, functions are determined by considering the
equivalent modal transmission lines for the layered box [10],
[16].

Equation (1) is solved by applying the MoM in the Galerkin
form. The unknown current density is represented through a
suitable set of basis functions defined on the th patch,
namely,

(5)

where are unknown coefficients.
As discussed in [10], the calculation of the MoM matrices

involves frequency-independent coefficients of two types. The
former represents thecoupling integralbetween the th basis
function on the th metallic area and the th modal vector of
the box, and is given by

(6)

The latter is the projection of the delta-gap excitation of theth
port on the th basis function (port integral), and is given by

(7)

For any frequency, the scattering parameters are calculated
straightforwardly from the coefficients obtained by the
solution of the MoM system [10].

III. ENTIRE DOMAIN BASIS FUNCTIONS

A key feature of the present approach is the use of a set of
entire domain basis functions, i.e., functions , which span
the entire domain .

The advantage of using such functions has been demonstrated
in [10], with reference to the case where all surfacesare rect-
angular. More specifically, the electric modal vectors of rect-
angular waveguides bounded by magnetic or mixed-type walls
have been used as basis functions. In this paper, the same con-
cept is applied to metallization of arbitrary shapes, with no re-
striction on the geometry of the surfaces. In this case, the
basis functions must be determined numerically and the effi-
ciency of the numerical method used for their calculation is a
vital issue. The BI–RME method discussed in Section V per-
mits to determine very efficiently enough basis functions for our
application.

In the case of simply connected surfaces, we have to calculate
two classes of basis functions expressed by

(8)

(9)
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where the pairs and are the eigen-
solutions of the homogeneous Helmholtz equation in the do-
main , i.e.,

in (10)

in (11)

In the case of -times connected surfaces, the set of basis func-
tions must be supplemented with additional functions

(12)

where satisfies the Laplace equation in the domain,
i.e.,

in (13)

The boundary conditions are different for metallizations con-
nected or not connected to ports.

In the case of metallizations not connected to ports (e.g.,
and in Fig. 2), is tangent to the whole boundary of. The
basis functions , , and satisfy the same boundary
condition provided that

on (14)

on (15)

on the inner contour
on

(16)

In the case of metallizations connected to ports (e.g.,and
in Fig. 2), is perpendicular to the port segment . In this
case, , , and must satisfy the mixed boundary
conditions

on

on
(17)

on

on
(18)

on the inner contour
on

on

(19)

It is worthy noting that, in the case of metallizations connected
to ports, denotes the boundary of , but the port segment

.

IV. COUPLING AND PORT INTEGRALS

When considering metallic areas with a rectangular shape,
the coupling integrals (6) and the port integrals (7) can be cal-
culated analytically by using the analytical expressions of the
basis functions (see, for instance, [10]). This possibility is pre-
cluded in the case of arbitrary shapes because the basis func-
tions are determined numerically. In this case, the surface inte-
gration (6) is a time-consuming task, especially in cases of basis
functions determined by a boundary integral method, since it re-
quires the numerical evaluation of the basis functions in many
points within the integration domain . However, the coupling
integrals (6) can be transformed from surface to line integrals,

thus dramatically reducing the computing time. As shown in the
Appendix, we have

(20)

(21)

(22)

(23)

(24)

(25)

where is the derivative along the boundary, namely, in the
direction of .

It is noted that these formulas hold true in both cases of met-
allizations connected or not connected to ports.

For the port integrals (7), we easily obtain

(26)

(27)

(28)

V. APPLICATION OF THEBI–RME METHOD

In the analysis of circuits of practical interest, some tens of
basis functions (8) and (9) are usually needed for each metallic
area. This, in turn, requires the calculation of some tens of eigen-
solutions of Helmoltz equations (10) and (11).

In the past years, some of the authors developed a novel
method (i.e., the BI–RME method) for the solution of the
Helmoltz equation in arbitrary domains [17]–[19]. A com-
prehensive description of the BI–RME method is reported in
[11]. In this section, we limit ourselves to a brief outline of the
BI–RME method, to highlight its advantages in the calculation
of entire domain basis functions.

The BI–RME method is a modified boundary integral
approach for the evaluation of eigenfunctions. The surface
(either simply or multiply connected) is considered as a part of
a fictitious enlarged domain with a rectangular shape [see
Fig. 3(a)]. The eigenfunctions to be determined are defined in

, and are assumed to vanish outside. They are expressed
as combinations of boundary integrals (BIs) and a resonant
mode expansion (RME), involving the modal potentials of the
region . The boundary integrals involve and

over the line [see Fig. 3(a)], which corresponds to the
part of not coincident with the rectangular boundary. Using
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(a) (b)

Fig. 3. Geometry for the application of the BI–RME method. (a) Internal
metallic area. (b) Metallic area connected to a port.

the BI–RME representation of the eigenfunctions and imposing
the proper boundary conditions on, the eigenvalue problems
(10) and (11) are converted into integral-differential equations.
As in the case of the conventional boundary element method
(BEM), the discretized problem resulting from the application
of the BI–RME method is much smaller than in conventional
approaches based on differential equations (finite element
method (FEM), finite-difference time-domain (FDFD), etc.).
Differently from the conventional BEM, the BI–RME method
leads to the determination of the eigenfunctions by the solution
of a linear matrix eigenvalue problem. In particular, it provides
as eigenvalues and up to a prescribed value ,
and as eigenfunctions and over the line
and the modal amplitudes of the RME.

The method is very efficient and reliable, also in cases
where a large number of eigenfunctions have to be determined.
Moreover, no spurious modes are found. Furthermore, it is
worth noting that the order of the matrix eigenvalue problem
to be solved depends on the extension of the lineand of the
surface of the resonator . For this reason, the efficiency of
the BI–RME method highly improves when a large part of the
boundary of fits with the rectangular boundary, as in the
example in Fig. 3(a).

The evaluation of coupling integrals (21), (23), and (24) re-
quires and on . On the portion , these
quantities are directly the solutions of the BI–RME method. On
the other part of , they are obtained from the BI–RME repre-
sentation of the eigenfunctions (see [11, eqs. (5.44) and (5.94)]).
Even if a post-processing is required for obtaining the boundary
values on , it is convenient to let coincide with

as much as possible. In fact, this reduces the dimensions
of the eigenvalue problems to be solved, thus increasing the ra-
pidity and accuracy of the solution.

To solve the Helmoltz equation in the case of a metalliza-
tion connected to a port, the exterior domain includes not
only , but also its mirror image , as shown in Fig. 3(b).
The problem is solved by imposing an even or an odd sym-
metry condition with respect to the symmetry plane shown in
Fig. 3(b). The details on the implementation of the BI–RME
method taking into account the symmetries are discussed in [11,
Sec. 5.2.3].

Finally, for multiply connected surfaces, all the possible basis
functions (12) must be considered, requiring the determination
of all the solutions of the Laplace equation (13). These
basis functions are obtained by solving (13) through the con-
ventional BEM [17]. Even in this case, when the patch is con-
nected to a port, it is possible to solve the Laplace equation by

Fig. 4. Printed microstrip filter composed of T-shaped port elements and
square-loop resonators.

Fig. 5. Comparison between simulated and measured results presented in [20],
and results obtained with the present approach, for the filter shown in Fig. 4.

creating a mirror image of , and considering an even sym-
metry condition on the symmetry plane.

VI. NUMERICAL RESULTS

We used the code for the analysis of printed circuits involving
resonators with complex shapes, which fully exploit the capa-
bilities of the method.

The first example refers to the analysis of a narrow-band mi-
crostrip filter composed of two T-shaped port elements and two
square-loop resonators (Fig. 4), firstly proposed in [20]. The
results obtained by the MoM/BI–RME approach are reported
in Fig. 5 and compared with experimental data and simulations
given in [20], showing a good agreement. The convergence was
obtained with 4000 modes of the box and 62 basis functions
(eight on each T-shaped line and 23 on each loop resonator),
corresponding to mm .

For this example, we report in Fig. 6 the study of the conver-
gence properties of the MoM/BI–RME method. In particular,
we verified the convergence when varying the number of basis
functions [see Fig. 6(a)], and when varying the number of modes
of the box [see Fig. 6(b)]. These graphs show that the frequency
response does not change when considering more than 62 basis
functions or more than 4000 modes of the box.

The calculation of the frequency response of Fig. 5 takes 22 s
for the determination of the basis functions and the evaluation
of the coupling and port integrals, and 0.135 s for the MoM
solution in each frequency point (on a Pentium III at 1 GHz).
Thus, the total computing time for the analysis in 100 frequency
points is 35.5 s. It is worth observing that taking advantage of
the symmetries of the geometry (which were not exploited in
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(a)

(b)

Fig. 6. Convergence behavior of the MoM/BI–RME method in the analysis
of the circuit shown in Fig. 4. (a) As a function of the total number of basis
functions, when considering 4000 modes of the box. (b) As a function of the
number of modes of the box, when considering 62 basis functions.

Fig. 7. Printed microstrip filter composed of two open-loop resonators.

our analysis) should lead to a dramatic reduction of the total
computing time.

The second example refers to the analysis of a narrow-band
microstrip filter composed of two open-loop resonators (Fig. 7)
[20]. The analysis of this structure (already presented in [12]) is
particularly challenging since the lines and loops are separated
by very narrow capacitive gaps, and the surface current must
be accurately represented near these gaps. Consequently, in this
case, the analysis requires more basis functions than in the pre-
vious example. Fig. 8 shows the frequency response of the filter
considering 4000 modes of the box and 158 basis functions (12
on each port line, 22 on the middle line, and 56 on each open
loop) corresponding to mm . The results are
in a good agreement with the theoretical and experimental data
taken from [20]. The computing time (without exploiting the

Fig. 8. Comparison between simulated and measured results presented in [20],
and results obtained with the present approach, for the filter shown in Fig. 7.

symmetries) is 48 s for the calculation of the basis functions and
of the coupling and port integrals, and 0.63 s for the MoM solu-
tion in each frequency point (on a Pentium III at 1 GHz). Thus,
the total computing time for the analysis in 100 frequency points
is 111 s.

As a final remark, we can observe that the selection of the
basis functions in our approach is performed by a spectral crite-
rion, including all the entire domain basis functions up to a pre-
scribed . Especially in cases of metallizations where one
of the dimensions is much larger than the other (e.g., narrow
strips), this criterion leads to the adoption of very large values
of , in order to include in the set of basis functions a suffi-
cient number of elements with significant variation along the
narrow dimension. Of course, it can happen that many basis
functions with uselessly rapid variation in the larger direction
can be included in the basis. These functions could be discarded,
but the procedure for their recognition is too complicate to be
conveniently implemented in a general purpose computer code.
Anyway, the numerical experiments presented above permit not
to dramatize the problem because we noted that it is sufficient to
consider basis functions whose variation in the narrow dimen-
sion correspond to one or two sinusoidal oscillations. In spite of
the roughness of the current representation, the results are very
good: i.e., probably dependent on the variational properties of
the admittance parameters obtained by the Galerkin procedure.

VII. CONCLUSION

We have presented an efficient technique for the accurate
analysis of shielded multilayered printed circuits composed of
arbitrarily shaped metallic areas. This technique is based on an
IE solved by using the MoM with entire domain basis functions.
The basis functions are efficiently evaluated by the BI–RME
method. This leads to MoM matrices of small size, even in the
case of complex circuits. Moreover, the transformation of the
coupling integrals from surface to line integrals permits to use
the basic outputs of the BI–RME method for calculating the
MoM matrix.

The analyzes of circuits of practical interest have been re-
ported and compared with both theoretical and experimental
data, showing that the approach is indeed feasible and leads to
a software code, which is both efficient and accurate.
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APPENDIX

Following a procedure similar to the one presented in [21],
[22], the transformation of the coupling integrals from surface
to line integrals is based on the application of Green’s identity
(see, for instance, [23, Appendix 2, eq. 45])

(A.1)

In the case of internal patches, obviously, the port segment
is not defined and the line integral on vanishes.

Derivation of (20)

The electric modal fields are related to scalar potentials
through (8) and (3), thus resulting in

(A.2)

By applying (A.1) to (A.2) with and
, we have

(A.3)

On the right-hand side of (A.3), the surface integral vanishes
because of

(A.4)

for any scalar function (see, for instance, [23, Appendix 2, eq.
38]), whereas the line integral on vanishes since
on . Moreover, the line integral on is not defined for
internal patches and, in the case of patches attached to ports, it
vanishes since on .
This proves (20).

Derivation of (21)

From (9) and (3), we have

(A.5)

By applying (A.1) to (A.5) with and ,
and using the Helmoltz equation , we have

(A.6)

By remembering that on , the line integral on
in (A.6) vanishes.

Moreover, by applying (A.1) to (A.5) with
and , and taking into account that

, we have

(A.7)

By remembering that on and that
on , the line integrals in (A.7) vanish. Therefore, by substi-
tuting the surface integral on the right-hand side of (A.6) into
(A.7), and considering , we finally obtain (21).

Derivation of (22)

From (12) and (3), we have

(A.8)

By applying (A.1) to (A.8) with and
, we have

(A.9)

On the right-hand side of (A.9), the surface integral vanishes due
to (A.4). With regard to the line integral on ,
on each contour . In the case of a closed contour

(A.10)
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(see [23, Appendix 2, eq. 55]). In the case of an open line
(only for patches attached to ports)

(A.11)

where and are extreme points of the line , which are
located on the box wall , where . Finally, the line
integral on vanishes since
on . This proves (22).

Derivation of (23)

From (8) and (4), we have

(A.12)

Therefore, the derivation of (23) is similar to the one of (21),
only taking into account the different boundary condition of the
scalar potential .

Derivation of (24)

From (9) and (4), we have

(A.13)

By applying (A.1) to (A.13) with and
, we have

(A.14)

Ontheright-handsideof (A.14), thesurface integralvanishesdue
to (A.4). In thecaseofpatchesconnected toports, the line integral
on vanishes since on . Moreover, in the line
integral , . This proves (24).

Derivation of (25)

From (12) and (4), we have

(A.15)

By applying (A.1) to (A.15) with and ,
we have

(A.16)

On the right-hand side of (A.16), the surface integral vanishes
because , whereas the line integral on van-
ishes since on . This proves (25).
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